Busca avançada
Ano de início
Entree


Prediction of Interpersonal Help-Seeking Behavior from Log Files in an In-Service Education Distance Course

Texto completo
Autor(es):
Mostrar menos -
Penteado, Bruno Elias ; Isotani, Seiji ; Paiva, Paula M. ; Morettin-Zupelari, Marina ; Ferrari, Deborah Viviane ; Rose, CP ; Martinez-Maldonado, R ; Hoppe, HU ; Luckin, R ; Mavrikis, M ; Porayska-Pomsta, K ; McLaren, B ; DuBoulay, B
Número total de Autores: 13
Tipo de documento: Artigo Científico
Fonte: ARTIFICIAL INTELLIGENCE IN EDUCATION, PT II; v. 10948, p. 5-pg., 2018-01-01.
Resumo

We propose a machine learning approach to automate the estimation of the interpersonal help-seeking level of students in an online course, based on their behavior in an LMS platform. We selected behavioral and performance features from the LMS logs, using forum and wiki variables in the context of a professional development course in audiology rehabilitation (N = 93). Then, we applied different state-of-the-art regression algorithms to predict their responses, using student-level cross-validation in the training set and evaluated the resulting models in a separate test set. As result, we had approximately an error of one point with our model, on average. We discuss some deviant cases and how this information can be used to inform tutors in online courses. (AU)

Processo FAPESP: 15/24507-2 - Ecossistema para produção e consumo de dados abertos conectados e sua aplicação no contexto educacional
Beneficiário:Seiji Isotani
Modalidade de apoio: Auxílio à Pesquisa - Regular