Busca avançada
Ano de início
Entree


The Joy of Probabilistic Answer Set Programming

Texto completo
Autor(es):
Cozman, Fabio Gagliardi ; DeBock, J ; DeCampos, CP ; DeCooman, G ; Quaeghebeur, E ; Wheeler, G
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162; v. 103, p. 11-pg., 2019-01-01.
Resumo

Probabilistic answer set programming (PASP) combines rules, facts, and independent probabilistic facts. Often one restricts such programs so that every query yields a sharp probability value. The purpose of this paper is to argue that a very useful modeling language is obtained by adopting a particular credal semantics for PASP, where one associates with each consistent program a credal set. We examine the basic properties of PASP and present an algorithm to compute (upper) probabilities given a program. (AU)

Processo FAPESP: 16/18841-0 - Algoritmos para inferência e aprendizado de programas lógicos probabilísticos
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Parceria para Inovação Tecnológica - PITE