Busca avançada
Ano de início
Entree


Clustered and deep echo state networks for signal noise reduction

Texto completo
Autor(es):
de Oliveira Junior, Laercio ; Stelzer, Florian ; Zhao, Liang
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: MACHINE LEARNING; v. 111, n. 8, p. 20-pg., 2022-03-11.
Resumo

Echo State Networks (ESNs) are Recurrent Neural Networks with fixed input and internal (hidden) weights, and adaptable output weights. The hidden part of an ESN can be considered as a discrete-time dynamical system, called reservoir. In classical ESNs, the internal connections are obtained from an Erdos-Renyi graph. A recent study proposed ESNs with clustered adjacency matrices (CESNs), where the clusters are either Erdos-Renyi graphs or Barabasi-Albert-like graphs. In this work, we investigate the effectiveness of CESNs and apply them for signal denoising. In addition, we introduce and study deep CESNs with multiple clustered layers. We found that CESNs and deep CESNs can compete with deep ESNs for all tasks that we considered. (AU)

Processo FAPESP: 15/50122-0 - Fenômenos dinâmicos em redes complexas: fundamentos e aplicações
Beneficiário:Elbert Einstein Nehrer Macau
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia