Busca avançada
Ano de início
Entree


Bag-of-Attributes Representation: a Vector Space Model for Electronic Health Records Analysis in OMOP

Texto completo
Autor(es):
Mostrar menos -
Clementino Jr, Jose M. ; Bones, Christian C. ; Faical, Bruno S. ; Linares, Oscar C. ; Lima, Daniel M. ; Gutierrez, Marco A. ; Traina Jr, Caetano ; Traina, Agma J. M. ; DeHerrera, AGS ; Gonzalez, AR ; Santosh, KC ; Temesgen, Z ; Kane, B ; Soda, P
Número total de Autores: 14
Tipo de documento: Artigo Científico
Fonte: 2020 IEEE 33RD INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS(CBMS 2020); v. N/A, p. 6-pg., 2020-01-01.
Resumo

Several studies have been performed worldwide to improve health services using data generated by digital medical systems. The increasing volume of data generated by these systems is making the use of knowledge discovery and data analysis techniques essential to improve the quality of the health services, which are offered by the medical facilities. However, it is possible to observe a gap, in the literature, about generic and flexible vector space models (VSM) that are well adapted to handle electronic health records (EHR), requiring that each knowledge discovery effort develop their own VSM or other representation model. This restriction can turn a knowledge discovery task over clinical pathways nonviable for comparative evaluations among different methods. Targeting such scenario, we propose the Bag-of-Attributes Representation (BOAR). BOAR represents an EHR as an n-dimensional vector space. Since BOAR takes advantage of the OMOP (Observational Medical Outcomes Partnership) standard, BOAR is able to represent records retrieved from different data models. The experimental results show that BOAR is flexible and robust to representing EHR from several sources, and allows the execution and evaluation of several clustering algorithms. (AU)

Processo FAPESP: 18/06228-7 - Detecção de padrões e anomalias em dados médicos usando Modelagem Matemática
Beneficiário:Bruno Squizato Faiçal
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 16/17078-0 - Mineração, indexação e visualização de Big Data no contexto de sistemas de apoio à decisão clínica (MIVisBD)
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/07200-9 - Analisando dados complexos vinculados a COVID-19 para apoio à tomada de decisão e prognóstico
Beneficiário:Agma Juci Machado Traina
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 19/04660-1 - Consolidando Métodos de Aprendizado de Máquina no Contexto do MiVisBD
Beneficiário:Christian Cesar Bones
Modalidade de apoio: Bolsas no Brasil - Programa Capacitação - Treinamento Técnico
Processo FAPESP: 18/06074-0 - Content-Based Image Retrieval using Selective Visual Attention
Beneficiário:Oscar Alonso Cuadros Linares
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado