Ideais de operadores não autoconjugados e estruturas complexas em espaços de Banach
Um estudo sobre operadores definidos em espaços de dimensão infinita e aplicações
Estruturas linearmente isomorfas e estruturas isométricas em espaços de Banach
Texto completo | |
Autor(es): |
Candido, Leandro
Número total de Autores: 1
|
Tipo de documento: | Artigo Científico |
Fonte: | STUDIA MATHEMATICA; v. 266, n. 2, p. 16-pg., 2022-04-28. |
Resumo | |
The Semadeni derivative of a Banach space X, denoted by S(X), is the quotient of the space of all weak* sequentially continuous functionals in X** by the canonical copy of X. In a remarkable 1960 paper, Z. Semadeni introduced this concept in order to prove that C([0, omega(1)]) is not isomorphic to C([0, omega(1)]) circle plus C([0, omega(1)]). Here we investigate this concept in the context of C(K, X) spaces. In our main result, we prove that if K is a Hausdorff compactum of countable height, then S(C(K , X)) is isometrically isomorphic to C(K, S(X)) for every Banach space X. Additionally, if X is a Banach space with the Mazur property, we explicitly find the derivative of C([0, omega(1)](n), X) for each n >= 1. Further we obtain an example of a nontrivial Banach space linearly isomorphic to its derivative. (AU) | |
Processo FAPESP: | 16/25574-8 - Geometria dos espaços de Banach |
Beneficiário: | Valentin Raphael Henri Ferenczi |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |