Busca avançada
Ano de início
Entree


Twisting functors and Gelfand-Tsetlin modules over semisimple Lie algebras

Texto completo
Autor(es):
Futorny, Vyacheslav ; Krizka, Libor
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS; v. N/A, p. 37-pg., 2022-08-29.
Resumo

We associate to an arbitrary positive root a of alpha complex semisimple finite-dimensional Lie algebra g a twisting endofunctor T-alpha of the category of g-modules. We apply this functor to generalized Verma modules in the category O(g) and construct a family of alpha-Gelfand-Tsetlin modules with finite Gamma(alpha)-multiplicities, where Gamma(alpha) is a commutative C-subalgebra of the universal enveloping algebra of g generated by a Cartan subalgebra of g and by the Casimir element of the gl(2)-subalgebra corresponding to the root alpha. This covers classical results of Andersen and Stroppel when alpha is a simple root and previous results of the authors in the case when g is a complex simple Lie algebra and alpha is the maximal root of g. The significance of constructed modules is that they are Gelfand-Tsetlin modules with respect to any commutative C-subalgebra of the universal enveloping algebra of g containing Gamma(alpha). Using the Beilinson-Bernstein correspondence we give a geometric realization of these modules together with their explicit description. We also identify a tensor subcategory of the category of alpha-Gelfand-Tsetlin modules which contains constructed modules as well as the category O(g). (AU)

Processo FAPESP: 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos
Beneficiário:Ivan Chestakov
Modalidade de apoio: Auxílio à Pesquisa - Temático