O formalismo de bracket derivado em álgebra e geometria, módulos de Gelfand-Tsetli...
Realização por tabelas de módulos cuspidais para Álgebras de Lie Simples
Texto completo | |
Autor(es): |
Futorny, Vyacheslav
;
Krizka, Libor
Número total de Autores: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | COMMUNICATIONS IN CONTEMPORARY MATHEMATICS; v. N/A, p. 37-pg., 2022-08-29. |
Resumo | |
We associate to an arbitrary positive root a of alpha complex semisimple finite-dimensional Lie algebra g a twisting endofunctor T-alpha of the category of g-modules. We apply this functor to generalized Verma modules in the category O(g) and construct a family of alpha-Gelfand-Tsetlin modules with finite Gamma(alpha)-multiplicities, where Gamma(alpha) is a commutative C-subalgebra of the universal enveloping algebra of g generated by a Cartan subalgebra of g and by the Casimir element of the gl(2)-subalgebra corresponding to the root alpha. This covers classical results of Andersen and Stroppel when alpha is a simple root and previous results of the authors in the case when g is a complex simple Lie algebra and alpha is the maximal root of g. The significance of constructed modules is that they are Gelfand-Tsetlin modules with respect to any commutative C-subalgebra of the universal enveloping algebra of g containing Gamma(alpha). Using the Beilinson-Bernstein correspondence we give a geometric realization of these modules together with their explicit description. We also identify a tensor subcategory of the category of alpha-Gelfand-Tsetlin modules which contains constructed modules as well as the category O(g). (AU) | |
Processo FAPESP: | 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |