Propriedade de Specht e identidades polinomiais graduadas para algumas álgebras nã...
Mikhail Vladimirovich Zaicev | Moscow State University - Rússia
Identidades graduadas em álgebras de Lie graduada-simples de dimensão finita
Texto completo | |
Autor(es): |
Centrone, Lucio
;
Diniz, Diogo
;
Mello, Thiago Castilho de
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Linear Algebra and its Applications; v. 653, p. 20-pg., 2022-08-24. |
Resumo | |
Let F be a field of characteristic zero, G be a group and M-n(F) be the algebra of matrices of size n with entries from F with a G -grading. Bahturin and Drensky proved that if the G grading on M-n(F) is elementary and the neutral component of M-n(F) is commutative, then the graded identities of M-n(F) follow from three basic types of identities and monomial identities of length >= 2 bounded by a function f(n) of n. In this paper we prove the best upper bound is f(n) = n. More generally, we prove that all the graded monomial identities of an elementary G -grading on M-n(F) follow from those of degree at most n. We also study gradings which satisfy no graded multilinear monomial identities but the trivial ones, which we call almost non-degenerate gradings. The description of non -degenerate elementary gradings on matrix algebras is reduced to the description of non-degenerate elementary gradings on matrix algebras that have commutative neutral component. We provide necessary conditions so that the grading on M-n(F) is almost non-degenerate and we apply the results on monomial identities to describe all almost non-degenerate Z-gradings on M-n(F) for n <= 5. (C) 2022 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 18/02108-7 - Identidades em álgebras (não) associativas e temas afins. |
Beneficiário: | Lucio Centrone |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |
Processo FAPESP: | 18/15627-2 - Graduações, automorfismos e identidades em álgebras |
Beneficiário: | Thiago Castilho de Mello |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |
Processo FAPESP: | 18/23690-6 - Estruturas, representações e aplicações de sistemas algébricos |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |