Busca avançada
Ano de início
Entree


Universality for Multiplicative Statistics of Hermitian Random Matrices and the Integro-Differential Painleve II Equation

Texto completo
Autor(es):
Ghosal, Promit ; Silva, Guilherme L. F.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Communications in Mathematical Physics; v. 397, n. 3, p. 71-pg., 2022-11-10.
Resumo

We study multiplicative statistics for the eigenvalues of unitarily-invariant Hermitian random matrix models. We consider one-cut regular polynomial potentials and a large class of multiplicative statistics. We show that in the large matrix limit several associated quantities converge to limits which are universal in both the polynomial potential and the family of multiplicative statistics considered. In turn, such universal limits are described by the integro-differential Painleve II equation, and in particular they connect the random matrix models considered with the narrow wedge solution to the KPZ equation at any finite time. (AU)

Processo FAPESP: 20/02506-2 - Análise assintótica de sistemas de partículas e matrizes aleatórias
Beneficiário:Guilherme Lima Ferreira da Silva
Modalidade de apoio: Bolsas no Brasil - Jovens Pesquisadores
Processo FAPESP: 19/16062-1 - Análise assintótica de sistemas de partículas e matrizes aleatórias
Beneficiário:Guilherme Lima Ferreira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores