Busca avançada
Ano de início
Entree


Decision Making for Autonomous Vehicles at Signalized Intersection under Uncertain Traffic Signal Phase and Timing Information

Autor(es):
Rodrigues da Silva, Junior Anderson ; Grassi Jr, Valdir ; Wolf, Denis Fernando ; IEEE
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2021 20TH INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS (ICAR); v. N/A, p. 6-pg., 2021-01-01.
Resumo

In real environments, autonomous vehicles must be able to deal with uncertainties related to the measurements provided by their perception system. Not taking such perception uncertainties into account can lead the vehicle to take erroneous decisions and cause accidents. Excessive speed rate change variations and red light crossing at signalized intersections are special cases of this problem. This paper presents a decision making for autonomous vehicles that considers uncertainty in timing information, but also in traffic light color (signal phase) measurement at signalized intersections. A Partially Observable Markov Decision Problem (POMDP) model is proposed in order to deal with the problem of partially observability of both signal phase and timing. By incorporating the perception system uncertainty, the POMDP model can reliably predict signal phase transitions, avoiding reacting in a too reactive manner and running red lights. Results show that the proposed POMDP model is able to estimate the true values of the signal phase and timing as more observations are gathered, which allows better decisions when compared to deterministic approaches. (AU)

Processo FAPESP: 18/19732-5 - Tomada de decisão e planejamento de trajetória para veículos inteligentes utilizando processos de decisão de Markov parcialmente observáveis e aprendizado por reforço inverso
Beneficiário:Júnior Anderson Rodrigues da Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 14/50851-0 - INCT 2014: Instituto Nacional de Ciência e Tecnologia para Sistemas Autônomos Cooperativos Aplicados em Segurança e Meio Ambiente
Beneficiário:Marco Henrique Terra
Modalidade de apoio: Auxílio à Pesquisa - Temático