Busca avançada
Ano de início
Entree


Differential Equations for the KPZ and Periodic KPZ Fixed Points

Texto completo
Autor(es):
Baik, Jinho ; Prokhorov, Andrei ; Silva, Guilherme L. F.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Communications in Mathematical Physics; v. 401, n. 2, p. 54-pg., 2023-04-13.
Resumo

The KPZ fixed point is a 2d random field, conjectured to be the universal limiting fluctuation field for the height function of models in the KPZ universality class. Similarly, the periodic KPZ fixed point is a conjectured universal field for spatially periodic models. For both fields, their multi-point distributions in the space-time domain have been computed recently. We show that for the case of the narrow-wedge initial condition, these multi-point distributions can be expressed in terms of so-called integrable operators. We then consider a class of operators that include the ones arising from the KPZ and the periodic KPZ fixed points, and find that they are related to various matrix integrable differential equations such as coupled matrix mKdV equations, coupled matrix NLS equations with complex time, and matrix KP-II equations. When applied to the KPZ fixed points, our results extend previously known differential equations for one-point distributions and equal-time, multi-position distributions to multi-time, multi-position setup. (AU)

Processo FAPESP: 19/16062-1 - Análise assintótica de sistemas de partículas e matrizes aleatórias
Beneficiário:Guilherme Lima Ferreira da Silva
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores
Processo FAPESP: 20/02506-2 - Análise assintótica de sistemas de partículas e matrizes aleatórias
Beneficiário:Guilherme Lima Ferreira da Silva
Modalidade de apoio: Bolsas no Brasil - Jovens Pesquisadores