Busca avançada
Ano de início
Entree


Weak notions of nondegeneracy in nonlinear semidefinite programming

Texto completo
Autor(es):
Andreani, Roberto ; Haeser, Gabriel ; Mito, Leonardo M. ; Ramirez, Hector
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: MATHEMATICAL PROGRAMMING; v. N/A, p. 32-pg., 2023-05-27.
Resumo

The constraint nondegeneracy condition is one of the most relevant and useful constraint qualifications in nonlinear semidefinite programming. It can be characterized in terms of any fixed orthonormal basis of the, let us say, l-dimensional kernel of the constraint matrix, by the linear independence of a set of l(l + 1)/2 derivative vectors. We show that this linear independence requirement can be equivalently formulated in a smaller set, of l derivative vectors, by considering all orthonormal bases of the kernel instead. This allows us to identify that not all bases are relevant for a constraint qualification to be defined, giving rise to a strictly weaker variant of nondegeneracy related to the global convergence of an external penalty method. We use some of these ideas to revisit an approach of Forsgren (Math Program 88, 105-128, 2000) for exploiting the sparsity structure of a transformation of the constraints to define a constraint qualification, which led us to develop another relaxed notion of nondegeneracy using a simpler transformation. If the zeros of the derivatives of the constraint function at a given point are considered, instead of the zeros of the function itself in a neighborhood of that point, we obtain an even weaker constraint qualification that connects Forsgren's condition and ours. (AU)

Processo FAPESP: 17/18308-2 - Condições de otimalidade e algoritmos de segunda-ordem
Beneficiário:Gabriel Haeser
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 18/24293-0 - Métodos computacionais de otimização
Beneficiário:Sandra Augusta Santos
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 17/17840-2 - Estimativas de erro em otimização não linear
Beneficiário:Leonardo Makoto Mito
Modalidade de apoio: Bolsas no Brasil - Doutorado