Busca avançada
Ano de início
Entree


Use of Biometric Images to Predict Body Weight and Hot CarcassWeight of Nellore Cattle

Texto completo
Autor(es):
Cominotte, Alexandre ; Fernandes, Arthur ; Dorea, Joao ; Rosa, Guilherme ; Torres, Rodrigo ; Pereira, Guilherme ; Baldassini, Welder ; Machado Neto, Otavio
Número total de Autores: 8
Tipo de documento: Artigo Científico
Fonte: ANIMALS; v. 13, n. 10, p. 12-pg., 2023-05-18.
Resumo

The objective of this study was to evaluate different methods of predicting body weight (BW) and hot carcass weight (HCW) from biometric measurements obtained through three-dimensional images of Nellore cattle. We collected BW and HCW of 1350 male Nellore cattle (bulls and steers) from four different experiments. Three-dimensional images of each animal were obtained using the Kinect((R)) model 1473 sensor (Microsoft Corporation, Redmond, WA, USA). Models were compared based on root mean square error estimation and concordance correlation coefficient. The predictive quality of the approaches used multiple linear regression (MLR); least absolute shrinkage and selection operator (LASSO); partial least square (PLS), and artificial neutral network (ANN) and was affected not only by the conditions (set) but also by the objective (BW vs. HCW). The most stable for BW was the ANN (Set 1: RMSEP = 19.68; CCC = 0.73; Set 2: RMSEP = 27.22; CCC = 0.66; Set 3: RMSEP = 27.23; CCC = 0.70; Set 4: RMSEP = 33.74; CCC = 0.74), which showed predictive quality regardless of the set analyzed. However, when evaluating predictive quality for HCW, the models obtained by LASSO and PLS showed greater quality over the different sets. Overall, the use of three-dimensional images was able to predict BW and HCW in Nellore cattle. (AU)

Processo FAPESP: 21/07222-5 - Efeito da restrição de vitamina A em dietas de terminação de animais F1 Angus com DEP positiva para marmoreio sobre a expressão gênica e protêomica muscular e os mecanismos envolvidos na deposição de gordura muscular
Beneficiário:Rodrigo de Nazaré Santos Torres
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 17/02057-0 - Uso de escores de avaliação visual e de imagens biométricas em bovinos Nelore
Beneficiário:Alexandre Cominotte
Modalidade de apoio: Bolsas no Brasil - Mestrado
Processo FAPESP: 17/20812-0 - Predição do peso corporal e peso de carcaça quente de bovinos Nelore através da utilização de imagens digitais
Beneficiário:Alexandre Cominotte
Modalidade de apoio: Bolsas no Exterior - Estágio de Pesquisa - Mestrado