Studyng geometry of some Riemannian manifolds with a help of a computer
Texto completo | |
Autor(es): |
Cavenaghi, Leonardo F.
;
J M e Silva, Renato
;
Speranca, Llohann D.
Número total de Autores: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | COLLECTANEA MATHEMATICA; v. N/A, p. 30-pg., 2023-02-16. |
Resumo | |
This paper is devoted to a deep analysis of the process known as Cheeger deformation, applied to manifolds with isometric group actions. Here, we provide new curvature estimates near singular orbits and present several applications. As the main result, we answer a question raised by a seminal result of Searle-Wilhelm about lifting positive Ricci curvature from the quotient of an isometric action. To answer this question, we develop techniques that can be used to provide a substantially streamlined version of a classical result of Lawson and Yau, generalize a curvature condition of Chavez, Derdzinski, and Rigas, as well as, give an alternative proof of a result of Grove and Ziller. (AU) | |
Processo FAPESP: | 17/10892-7 - Geometria e topologia em curvatura seccional positiva/não-negativa |
Beneficiário: | Llohann Dallagnol Sperança |
Modalidade de apoio: | Auxílio à Pesquisa - Regular |
Processo FAPESP: | 17/19657-0 - Classificação e propriedades globais de Folheações Riemannianas |
Beneficiário: | Llohann Dallagnol Sperança |
Modalidade de apoio: | Bolsas no Exterior - Pesquisa |