Busca avançada
Ano de início
Entree


A Markovian Incremental Stochastic Subgradient Algorithm

Texto completo
Autor(es):
Massambone, Rafael ; Costa, Eduardo Fontoura ; Helou, Elias Salomao
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: IEEE Transactions on Automatic Control; v. 68, n. 1, p. 16-pg., 2023-01-01.
Resumo

In this article, a stochastic incremental subgradient algorithm for the minimization of a sum of convex functions is introduced. The method sequentially uses partial subgradient information, and the sequence of partial subgradients is determined by a general Markov chain. This makes it suitable to be used in networks, where the path of information flow is stochastically selected. We prove convergence of the algorithm to a weighted objective function, where the weights are given by the Cesaro limiting probability distribution of the Markov chain. Unlike previous works in the literature, the Cesaro limiting distribution is general (not necessarily uniform), allowing for general weighted objective functions and flexibility in the method. (AU)

Processo FAPESP: 17/20934-9 - Filtragem e controle de sistemas com saltos nos parâmetros
Beneficiário:Eduardo Fontoura Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs