Busca avançada
Ano de início
Entree


Impact of non-thermal pasteurization technologies on vitamin B12 content in milk

Texto completo
Autor(es):
Ceribeli, Caroline ; Otte, Jeanette ; Walkling-Ribeiro, Markus ; Cardoso, Daniel Rodrigues ; Ahrne, Lilia M.
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES; v. 84, p. 9-pg., 2023-02-17.
Resumo

Limited studies have reported on the effect of non-thermal processing technologies on vitamin B12, an essential vitamin that does not occur in many plant based foods. In this study, raw milk was treated by HHP (300 to 600 MPa, 5 min), PEF (16 kV/cm, 29 to 51 kJ/L), or UV-C (2 to 18 mJ/cm2). The results showed that PEF and HHP pasteurization preserved the initial content of B12 in milk while UV-C caused 10% loss. HHP at 600 MPa (5 min) reduced the total number of microorganisms, similar to conventional pasteurization levels, without impact on vitamin B12 concentration. PEF treatment at 43 kJ/L did not affect vitamin B12 concentration, and provided a 0.9 log10 CFU/mL reduction above the reference for pasteurization. While UV-C caused no microbial reduction with the experimental setup used, but even so, a 10% reduction in vitamin B12 concentration occurred at the highest UV-C dose (18 mJ/cm2). Industrial relevance: Our study demonstrated differences in the sensitivity of vitamin B12 to pressure, electric field, and UV-C light, that should be taken into account to preserve this vitamin in milk. (AU)

Processo FAPESP: 17/01189-0 - Novel aging: tecnologias e soluções para fabricar novos produtos lácteos para um envelhecimento saudável
Beneficiário:Daniel Rodrigues Cardoso
Modalidade de apoio: Auxílio à Pesquisa - Temático