| Texto completo | |
| Autor(es): |
Coletti, Cristian F.
;
De Lima, Lucas R.
;
Hinsen, Alexander
;
Jahnel, Benedikt
;
Valesin, Daniel
Número total de Autores: 5
|
| Tipo de documento: | Artigo Científico |
| Fonte: | JOURNAL OF APPLIED PROBABILITY; v. N/A, p. 19-pg., 2023-04-24. |
| Resumo | |
Let a random geometric graph be defined in the supercritical regime for the existence of a unique infinite connected component in Euclidean space. Consider the first-passage percolation model with independent and identically distributed random variables on the random infinite connected component. We provide sufficient conditions for the existence of the asymptotic shape, and we show that the shape is a Euclidean ball. We give some examples exhibiting the result for Bernoulli percolation and the Richardson model. In the latter case we further show that it converges weakly to a nonstandard branching process in the joint limit of large intensities and slow passage times. (AU) | |
| Processo FAPESP: | 20/12868-9 - Forma limite para o processo de contato em grafos geométricos aleatórios |
| Beneficiário: | Lucas Roberto de Lima |
| Modalidade de apoio: | Bolsas no Exterior - Estágio de Pesquisa - Doutorado |
| Processo FAPESP: | 17/10555-0 - Modelagem estocástica de sistemas interagentes |
| Beneficiário: | Fabio Prates Machado |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 19/19056-2 - Forma assintótica para processos subaditivos em grupos e em grafos geométricos aleatórios |
| Beneficiário: | Lucas Roberto de Lima |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |