Busca avançada
Ano de início
Entree


WELL-POSEDNESS FOR SOME PERTURBATIONS OF THE KDV EQUATION WITH LOW REGULARITY DATA

Texto completo
Autor(es):
Carvajal, Xavier ; Panthee, Mahendra
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Electronic Journal of Differential Equations; v. N/A, p. 18-pg., 2008-01-01.
Resumo

We study some well-posedness issues of the initial value problem associated with the equation u(t) + u(xxx) + eta Lu + uu(x) = 0, x is an element of R, t >= 0, where eta > 0, (Lu) over cap(xi) = -Phi(xi)(u) over cap(xi) and Phi is an element of R is bounded above. Using the theory developed by Bourgain and Kenig, Ponce and Vega, we prove that the initial value problem is locally well-posed for given data in Sobolev spaces H-s(R) with regularity below L-2. Examples of this model are the Ostrovsky-Stepanyams-Tsimring equation for Phi(xi) = vertical bar xi vertical bar - vertical bar xi vertical bar(3), the derivative Korteweg-de Vries-Kuramoto-Sivashinsky equation for Phi(xi) = xi(2) - xi(4), and the Korteweg-de Vries-Burguers equation for Phi(xi) = -xi(2). (AU)

Processo FAPESP: 04/07189-2 - Sobre a baixa regularidade do problema de valor inicial para as equações cúbica 1 d de Schrödinger não-linear e modificada Korteweg-de Vries (mKdV)
Beneficiário:Xavier Carvajal Paredes
Modalidade de apoio: Bolsas no Exterior - Pesquisa