Busca avançada
Ano de início
Entree


INSTABILITY OF ELLIPTIC EQUATIONS ON COMPACT RIEMANNIAN MANIFOLDS WITH NON-NEGATIVE RICCI CURVATURE

Texto completo
Autor(es):
Nascimento, Arnaldo S. ; Goncalves, Alexandre C.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: Electronic Journal of Differential Equations; v. N/A, p. 18-pg., 2010-05-08.
Resumo

We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N-dimensional Riemannian manifolds without boundary and non-negative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant local minimizers for the same class of functionals. (AU)

Processo FAPESP: 06/02023-4 - Estudo de uma EDP elíptica geométrica em uma superfície compacta
Beneficiário:Alexandre Casassola Gonçalves
Modalidade de apoio: Auxílio à Pesquisa - Regular