Busca avançada
Ano de início
Entree


Bilayer Segmentation Augmented with Future Evidence

Texto completo
Autor(es):
Rodrigues Sanches, Silvio Ricardo ; da Silva, Valdinei Freire ; Tori, Romero ; Murgante, B ; Gervasi, O ; Misra, S ; Nedjah, N ; Rocha, AMAC ; Taniar, D ; Apduhan, BO
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2012, PT II; v. 7334, p. 13-pg., 2012-01-01.
Resumo

This paper presents an algorithm that augments a previous model known in the literature for the automatic segmentation of monocular videos into foreground and background layers. The original model fuses visual cues such as color, contrast, motion and spatial priors within a Conditional Random Field. Our augmented model makes use of bidirectional motion priors by exploiting future evidence. Although our augmented model processes more data, it does so with the same time performance of the original model. We evaluate the augmented model within ground truth data and the results show that the augmented model produces better segmentation. (AU)

Processo FAPESP: 11/19280-8 - CogBot: integrando informação perceptual e conhecimento semântico na robótica cognitiva
Beneficiário:Anna Helena Reali Costa
Modalidade de apoio: Auxílio à Pesquisa - Regular