| Texto completo | |
| Autor(es): |
Bissacot, Rodrigo
;
Garibaldi, Eduardo
;
Thieullen, Philippe
Número total de Autores: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Ergodic Theory and Dynamical Systems; v. 38, p. 23-pg., 2018-05-01. |
| Resumo | |
We study the zero-temperature limit of the Gibbs measures of a class of long-range potentials on a full shift of two symbols {0, 1}. These potentials were introduced by Walters as a natural space for the transfer operator. In our case, they are constant on a countable infinity of cylinders and are Lipschitz continuous or, more generally, of summable variation. We assume that there exist exactly two ground states: the fixed points 0(infinity) and 1(infinity). We fully characterize, in terms of the Peierls barrier between the two ground states, the zero-temperature phase diagram of such potentials, that is, the regions of convergence or divergence of the Gibbs measures as the temperature goes to zero. (AU) | |
| Processo FAPESP: | 11/16265-8 - Dinâmica em baixas dimensões |
| Beneficiário: | Edson Vargas |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 15/10398-7 - Medidas de Gibbs em temperatura nula |
| Beneficiário: | Eduardo Garibaldi |
| Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |