Busca avançada
Ano de início
Entree


Temporal Approaches for Human Activity Recognition using Inertial Sensors

Texto completo
Autor(es):
Garcia, Felipe Aparecido ; Ranieri, Caetano Mazzoni ; Romero, Roseli A. F. ; Colombini, EL ; Junior, PLJD ; Garcia, LTD ; Goncalves, LMG ; Sa, STD ; Estrada, EDD ; Botelho, SSD
Número total de Autores: 10
Tipo de documento: Artigo Científico
Fonte: 2019 LATIN AMERICAN ROBOTICS SYMPOSIUM, 2019 BRAZILIAN SYMPOSIUM ON ROBOTICS (SBR) AND 2019 WORKSHOP ON ROBOTICS IN EDUCATION (LARS-SBR-WRE 2019); v. N/A, p. 5-pg., 2019-01-01.
Resumo

Human Activity Recognition (HAR) involves classifying one person's activity based on sensor data. In this work, inertial data, collected mainly from wearable sensors, are used to recognize HAR by using Convolutional Neural Networks (CNN) to extract features from the raw sensor data. Additionally, Temporal Convolutional Networks (TCN) are applied to classify the extracted features, comparing the overall performance of those layers with Long Short-Term Memory (LSTM) recurrent neural network layers. Several experiments are performed and the results show that TCN based architectures are able to outperform LSTM based architectures in sequence modeling. (AU)

Processo FAPESP: 14/50851-0 - INCT 2014: Instituto Nacional de Ciência e Tecnologia para Sistemas Autônomos Cooperativos Aplicados em Segurança e Meio Ambiente
Beneficiário:Marco Henrique Terra
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 17/01687-0 - Arquitetura e aplicações para robótica em ambientes inteligentes
Beneficiário:Roseli Aparecida Francelin Romero
Modalidade de apoio: Auxílio à Pesquisa - Regular