Busca avançada
Ano de início
Entree


Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model

Texto completo
Autor(es):
Mamani, Javier Bustamante ; Marinho, Bruna Souto ; de Albuquerque Rego, Gabriel Nery ; Nucci, Mariana Penteado ; Alvieri, Fernando ; dos Santos, Ricardo Silva ; Matias Ferreira, Joao Victor ; de Oliveira, Fernando Anselmo ; Gamarra, Lionel Fernel
Número total de Autores: 9
Tipo de documento: Artigo Científico
Fonte: Einstein (São Paulo); v. 18, p. 8-pg., 2020-01-01.
Resumo

Objective: To evaluate the magnetic hyperthermia therapy in glioblastoma tumor-on-a-Chip model using a microfluidics device. Methods: The magnetic nanoparticles coated with aminosilane were used for the therapy of magnetic hyperthermia, being evaluated the specific absorption rate of the magnetic nanoparticles at 300 Gauss and 305kHz. A preculture of C6 cells was performed before the 3D cells culture on the chip. The process of magnetic hyperthermia on the Chip was performed after administration of 20 mu L of magnetic nanoparticles (10mgFe/mL) using the parameters that generated the specific absorption rate value. The efficacy of magnetic hyperthermia therapy was evaluated by using the cell viability test through the following fluorescence staining: calcein acetoxymethyl ester (492/513nm), for live cells, and ethidium homodimer-1 (526/619nm) for dead cells dyes. Results: Magnetic nanoparticles when submitted to the alternating magnetic field (300 Gauss and 305kHz) produced a mean value of the specific absorption rate of 115.4 +/- 6.0W/g. The 3D culture of C6 cells evaluated by light field microscopy imaging showed the proliferation and morphology of the cells prior to the application of magnetic hyperthermia therapy. Fluorescence images showed decreased viability of cultured cells in organ-on-a-Chip by 20% and 100% after 10 and 30 minutes of the magnetic hyperthermia therapy application respectively. Conclusion: The study showed that the therapeutic process of magnetic hyperthermia in the glioblastoma on-a-chip model was effective to produce the total cell lise after 30 minutes of therapy. (AU)

Processo FAPESP: 16/21470-3 - Ação terapêutica das células tronco mesenquimais da medula humana, marcadas com nanopartículas multimodais em ratos diabéticos submetidos a isquemia cerebral focal: estudo dos mecanismos celulares, moleculares e funcionais.
Beneficiário:Lionel Fernel Gamarra Contreras
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 14/50983-3 - INCT 2014: fluidos complexos
Beneficiário:Antonio Martins Figueiredo Neto
Modalidade de apoio: Auxílio à Pesquisa - Temático