Busca avançada
Ano de início
Entree


Two-stage and one-group two-dimensional guillotine cutting problems with defects: a CP-based algorithm and ILP formulations

Texto completo
Autor(es):
Martin, Mateus ; Morabito, Reinaldo ; Munari, Pedro
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH; v. 60, n. 6, p. 20-pg., 2021-02-09.
Resumo

We address two variants of the two-dimensional guillotine cutting problem that appear in different manufacturing settings that cut defective objects. Real-world applications include the production of flat glass in the glass industry and the cutting of wooden boards with knotholes in the furniture industry. These variants assume that there are several defects in the object, but the items cut should be defective-free; the cutting pattern is limited to two guillotine stages; and the maximum number of copies per item type in the pattern can be limited. The first variant deals with exact 2-stage patterns, while the second with exact 1-group patterns. To effectively solve these problems, we propose a Constraint Programming (CP) based algorithm as well as different Integer Linear Programming (ILP) formulations. The first presented formulations are extensions of the modelling approach of [Martin, M., E. G. Birgin, R. D. Lobato, R. Morabito, and P. Munari. 2020. "Models for the Two-Dimensional Rectangular Single Large Placement Problem with Guillotine Cuts and Constrained Pattern." International Transactions in Operational Research 27: 767-793. doi:] for the case with defects, while the others are novel and more elaborate formulations based on the relative position of the items. We evaluate these three approaches with computational experiments using a set of benchmark instances from the literature. The results show that the approaches find optimal and near-optimal solutions in short processing times for several types of problem instances. (AU)

Processo FAPESP: 16/08039-1 - Problemas de Corte Bidimensional Guilhotinado e Restrito: Formulações Matemáticas e Métodos de Solução
Beneficiário:Mateus Pereira Martin
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 20/00747-2 - Novas formulações para o problema de minimização de pilhas abertas e correlatos
Beneficiário:Mateus Pereira Martin
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 16/01860-1 - Problemas de corte, empacotamento, dimensionamento de lotes, programação da produção, roteamento, localização e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Modalidade de apoio: Auxílio à Pesquisa - Temático