Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Scaling properties of functionals and existence of constrained minimizers

Texto completo
Autor(es):
Bellazzini, Jacopo [1] ; Siciliano, Gaetano [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sassari, I-07100 Sassari - Italy
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508090 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF FUNCTIONAL ANALYSIS; v. 261, n. 9, p. 2486-2507, NOV 1 2011.
Citações Web of Science: 26
Resumo

In this paper we develop a new method to prove the existence of minimizers for a class of constrained minimization problems on Hilbert spaces that are invariant under translations. Our method permits to exclude the dichotomy of the minimizing sequences for a large class of functionals. We introduce family of maps, called scaling paths, that permits to show the strong subadditivity inequality. As byproduct the strong convergence of the minimizing sequences (up to translations) is proved. We give an application to the energy functional I associated to the Schrodinger-Poisson equation in IR(3) i psi(t) + Delta psi - (|x|(-1) {*} |psi|(2))psi + |psi|(p-2)psi = 0 when 2 < p < 3. In particular we prove that I achieves its minimum on the constraint [u is an element of H(1) (R(3)): parallel to u parallel to(2) = rho] for every sufficiently small rho > 0. In this way we recover the case studied in Sanchez and Soler (2004) {[}20] for p = 8/3 and we complete the case studied by the authors for 3 < p < 10/3 in Bellazzini and Siciliano (2011) {[}4]. (C) 2011 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 11/01081-9 - Problemas variacionais geométricos e EDPs
Beneficiário:Paolo Piccione
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional