Busca avançada
Ano de início
Entree


Topological equivalence at infinity of a planar vector field and its principal part defined through Newton polytope

Texto completo
Autor(es):
Dalbelo, Thais Maria ; Oliveira, Regilene ; Perez, Otavio Henrique
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: Journal of Differential Equations; v. 408, p. 24-pg., 2024-07-08.
Resumo

Given a planar polynomial vector field X with a fixed Newton polytope P , we prove (under some non-degeneracy conditions) that the monomials associated to the upper boundary of P determine (under topological equivalence) the phase portrait of X in a neighborhood of boundary of the Poincar & eacute;-Lyapunov disk. This result can be seen as a version of the well known result of Berezovskaya, Brunella and Miari [2,5] for the dynamics at infinity. We also discuss the non-existence of periodic orbits near infinity via Newton polytope, as well as the effect of the Poincar & eacute;-Lyapunov compactification on P . (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. (AU)

Processo FAPESP: 19/21181-0 - Novas fronteiras na Teoria de Singularidades
Beneficiário:Regilene Delazari dos Santos Oliveira
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 21/10198-9 - Variedades invariantes e conjuntos periódicos limite de folheações descontínuas
Beneficiário:Otavio Henrique Perez
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 23/01018-2 - Variedades determinantais, obstrução de Euler e equisingularidade de Whitney
Beneficiário:Thais Maria Dalbelo
Modalidade de apoio: Bolsas no Exterior - Pesquisa