| Texto completo | |
| Autor(es): |
Dalbelo, Thais Maria
;
Oliveira, Regilene
;
Perez, Otavio Henrique
Número total de Autores: 3
|
| Tipo de documento: | Artigo Científico |
| Fonte: | Journal of Differential Equations; v. 408, p. 24-pg., 2024-07-08. |
| Resumo | |
Given a planar polynomial vector field X with a fixed Newton polytope P , we prove (under some non-degeneracy conditions) that the monomials associated to the upper boundary of P determine (under topological equivalence) the phase portrait of X in a neighborhood of boundary of the Poincar & eacute;-Lyapunov disk. This result can be seen as a version of the well known result of Berezovskaya, Brunella and Miari [2,5] for the dynamics at infinity. We also discuss the non-existence of periodic orbits near infinity via Newton polytope, as well as the effect of the Poincar & eacute;-Lyapunov compactification on P . (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies. (AU) | |
| Processo FAPESP: | 19/21181-0 - Novas fronteiras na Teoria de Singularidades |
| Beneficiário: | Regilene Delazari dos Santos Oliveira |
| Modalidade de apoio: | Auxílio à Pesquisa - Temático |
| Processo FAPESP: | 21/10198-9 - Variedades invariantes e conjuntos periódicos limite de folheações descontínuas |
| Beneficiário: | Otavio Henrique Perez |
| Modalidade de apoio: | Bolsas no Brasil - Pós-Doutorado |
| Processo FAPESP: | 23/01018-2 - Variedades determinantais, obstrução de Euler e equisingularidade de Whitney |
| Beneficiário: | Thais Maria Dalbelo |
| Modalidade de apoio: | Bolsas no Exterior - Pesquisa |