Busca avançada
Ano de início
Entree


Explaining answers generated by knowledge graph embeddings

Texto completo
Autor(es):
Ruschel, Andrey ; Gusmao, Arthur Colombini ; Cozman, Fabio Gagliardi
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING; v. 171, p. 25-pg., 2024-06-13.
Resumo

Completion of large-scale knowledge bases, such as DBPedia or Freebase, often relies on embedding models that turn symbolic relations into vector -based representations. Such embedding models are rather opaque to the human user. Research in interpretability has emphasized non -relational classifiers, such as deep neural networks, and has devoted less effort to opaque models extracted from relational structures, such as knowledge graph embeddings. We introduce techniques that produce explanations, expressed as logical rules, for predictions based on the embeddings of knowledge graphs. Algorithms build explanations out of paths in an input knowledge graph, searched through contextual and heuristic cues. (AU)

Processo FAPESP: 19/07665-4 - Centro de Inteligência Artificial
Beneficiário:Fabio Gagliardi Cozman
Modalidade de apoio: Auxílio à Pesquisa - Programa eScience e Data Science - Centros de Pesquisa em Engenharia
Processo FAPESP: 17/19007-6 - Algoritmos de inferência e aprendizagem para programação lógica probabilística
Beneficiário:Arthur Colombini Gusmão
Modalidade de apoio: Bolsas no Brasil - Mestrado