Busca avançada
Ano de início
Entree


The Occurrence of Zero-Hopf Bifurcation in a Generalized Sprott A System

Texto completo
Autor(es):
Messias, Marcelo ; Reinol, Alisson C.
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: NONLINEAR DYNAMICS OF STRUCTURES, SYSTEMS AND DEVICES, VOL I, NODYCON 2019; v. N/A, p. 9-pg., 2020-01-01.
Resumo

From the normal form of polynomial differential systems in R3 having a sphere as invariant algebraic surface, we obtain a class of quadratic systems depending on ten real parameters, which encompasses the well-known Sprott A system. For this reason, we call them generalized Sprott A systems. In this paper, we study the dynamics and bifurcations of these systems as the parameters are varied. We prove that, for certain parameter values, the z-axis is a line of equilibria, the origin is a non-isolated zero-Hopf equilibrium point, and the phase space is foliated by concentric invariant spheres. By using the averaging theory we prove that a small linearly stable periodic orbit bifurcates from the zero-Hopf equilibrium point at the origin. Finally, we numerically show the existence of nested invariant tori around the bifurcating periodic orbit. (AU)

Processo FAPESP: 19/10269-3 - Teorias ergódica e qualitativa dos sistemas dinâmicos II
Beneficiário:Claudio Aguinaldo Buzzi
Modalidade de apoio: Auxílio à Pesquisa - Temático