Busca avançada
Ano de início
Entree


Unsupervised Multitemporal Triclass Change Detection

Texto completo
Autor(es):
Negri, Rogerio G. ; Frery, Alejandro C. ; Casaca, Wallace ; Gamba, Paolo ; Bhattacharya, Avik
Número total de Autores: 5
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING; v. 62, p. 17-pg., 2024-01-01.
Resumo

Change detection is a fundamental task that involves assessing changes in a given region over multiple time periods. It has been widely applied across various fields, including monitoring deforestation, urban expansion, and natural disaster analysis. In this article, we address the critical and complex issue of automatically identifying types of changes in land cover using remotely sensed imagery. While conventional unsupervised change detection methods typically focus on comparing pairs of images and making a binary decision between "change" and "nonchange," our approach tackles the challenge of analyzing long image series and identifying the kind of change. Under this condition, the unsupervised change detection process allows for a more informative identification of the land cover dynamics. Moreover, our approach transforms input data to a new representation, capturing the target's spectral response changes over time. Through the utilization of stochastic distances and an optimized thresholding scheme, areas exhibiting minimal spectral response variance are classified as unchanged, effectively distinguishing them from regions undergoing modifications. Next, by applying autocorrelation analysis, regions exhibiting temporal modifications are segregated into periodic (i.e., seasonal) and aperiodic (i.e., permanent) change cases. Experimental validation using both simulated and real-world remote sensing image series demonstrates the effectiveness of the proposed approach. (AU)

Processo FAPESP: 21/01305-6 - Avanços teóricos em detecção de anomalias e construção de sistemas de monitoramento ambiental
Beneficiário:Rogério Galante Negri
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 23/02538-0 - Séries temporais, ondaletas, dados de alta dimensão e aplicações
Beneficiário:Aluísio de Souza Pinheiro
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 21/03328-3 - Desenvolvimento de novas metodologias e soluções tecnológicas inteligentes em segmentação de imagens digitais e enfrentamento da COVID-19
Beneficiário:Wallace Correa de Oliveira Casaca
Modalidade de apoio: Auxílio à Pesquisa - Regular