Busca avançada
Ano de início
Entree


Texto completo
Autor(es):
Fontes, Luiz Renato ; Gomes, Pablo A. ; Pinheiro, Maicon A.
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: ELECTRONIC JOURNAL OF PROBABILITY; v. 28, p. 26-pg., 2023-01-01.
Resumo

We consider a particle moving in continuous time as a Markov jump process; its discrete chain is given by an ordinary random walk on Zd, and its jump rate at (x; t) is given by a fixed function ' of the state of a birth-and-death (BD) process at x, at time t; BD processes at different sites are independent and identically distributed, and ' is assumed non-increasing and vanishing at infinity. We derive a LLN and a CLT for the particle position when the environment is "strongly ergodic". In the absence of a viable uniform lower bound for the jump rate, we resort instead to stochastic domination, as well as to a subadditive argument to control the time spent by the particle to perform n consecutive jumps; and we also impose conditions on the initial (product) environmental distribution. (AU)

Processo FAPESP: 15/00053-2 - Evoluções estocásticas de equilíbrio e não-equilíbrio no contínuo
Beneficiário:Luiz Renato Gonçalves Fontes
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional
Processo FAPESP: 17/10555-0 - Modelagem estocástica de sistemas interagentes
Beneficiário:Fabio Prates Machado
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 20/02636-3 - Modelos estocásticos em ambientes aleatórios
Beneficiário:Pablo Almeida Gomes
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado