Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Meta-Recognition: The Theory and Practice of Recognition Score Analysis

Texto completo
Autor(es):
Scheirer, Walter J. [1] ; Rocha, Anderson [2] ; Micheals, Ross J. [3] ; Boult, Terrance E. [1]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Colorado, Dept Comp Sci, Colorado Springs, CO 80918 - USA
[2] Univ Estadual Campinas, IC, BR-13084971 Campinas, SP - Brazil
[3] NIST, Gaithersburg, MD 20899 - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE; v. 33, n. 8, p. 1689-1695, AUG 2011.
Citações Web of Science: 40
Resumo

In this paper, we define meta-recognition, a performance prediction method for recognition algorithms, and examine the theoretical basis for its postrecognition score analysis form through the use of the statistical extreme value theory (EVT). The ability to predict the performance of a recognition system based on its outputs for each match instance is desirable for a number of important reasons, including automatic threshold selection for determining matches and nonmatches, and automatic algorithm selection or weighting for multi-algorithm fusion. The emerging body of literature on postrecognition score analysis has been largely constrained to biometrics, where the analysis has been shown to successfully complement or replace image quality metrics as a predictor. We develop a new statistical predictor based upon the Weibull distribution, which produces accurate results on a per instance recognition basis across different recognition problems. Experimental results are provided for two different face recognition algorithms, a fingerprint recognition algorithm, a SIFT-based object recognition system, and a content-based image retrieval system. (AU)

Processo FAPESP: 10/05647-4 - Computação forense e criminalística de documentos: coleta, organização, classificação e análise de evidências
Beneficiário:Anderson de Rezende Rocha
Linha de fomento: Auxílio à Pesquisa - Apoio a Jovens Pesquisadores