Busca avançada
Ano de início
Entree


New lower bounds for the radius of analyticity for the mKdV equation and a system of mKdV-type equations

Texto completo
Autor(es):
Figueira, Renata O. ; Panthee, Mahendra
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF EVOLUTION EQUATIONS; v. 24, n. 2, p. 24-pg., 2024-06-01.
Resumo

This paper is devoted to obtaining new lower bounds to the radius of spatial analyticity for the solutions of modified Korteweg-de Vries (mKdV) equation and a coupled system of mKdV-type equations, starting with real analytic initial data with a fixed radius of analyticity sigma(0). Specifically, we derive almost conserved quantities to prove that the local solution can be extended to a time interval [0, T] for any large T > 0 in such a way that the radius of analyticity sigma(T) decays no faster than cT(-1) for both the equations, where c is a positive constant. The results of this paper improve the ones obtained in Figueira and Panthee (Decay of the radius of spatial analyticity for the modified KdV equation and the nonlinear Schrodinger equation with third order dispersion, to appear in NoDEA, arXiv:2307.09096) and Figueira and Himonas (J Math Anal Appl 497(2):124917, 2021), respectively, for the mKdV equation and a mKdV-type system. (AU)

Processo FAPESP: 23/06416-6 - Fenômenos não lineares e dispersão
Beneficiário:Mahendra Prasad Panthee
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 21/04999-9 - Evolução do raio de analiticidade para equações e sistemas de equações dispersivas
Beneficiário:Renata de Oliveira Figueira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado