Busca avançada
Ano de início
Entree


Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations

Texto completo
Autor(es):
Bortolan, M. C. ; Carvalho, A. N. ; Marin-Rubio, P. ; Valero, J.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: JOURNAL OF EVOLUTION EQUATIONS; v. 25, n. 1, p. 29-pg., 2025-03-01.
Resumo

In this paper, we obtain the existence of a weak global attractor for the three-dimensional Navier-Stokes equations, that is, a weakly compact set with an invariance property, that uniformly attracts solutions, with respect to the weak topology, for initial data in bounded sets. To that end, we define this weak global attractor in terms of limits of solutions of the globally modified Navier-Stokes equations in the weak topology. We use the theory of semilinear parabolic equations and & varepsilon;-regularity to obtain the local well-posedness for the globally modified Navier-Stokes equations, the existence of the global attractor and its regularity. (AU)

Processo FAPESP: 20/14075-6 - Sistemas dinâmicos e seus atratores sob perturbação
Beneficiário:Alexandre Nolasco de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Temático