Busca avançada
Ano de início
Entree


From Hamiltonian systems to compressible Euler equation driven by additive Holder noise

Texto completo
Autor(es):
Correa, Jesus M. ; Acevedo, Juan David Londono ; Olivera, Christian
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS; v. N/A, p. 18-pg., 2025-04-05.
Resumo

In this paper, we derive stochastic compressible Euler Equation from a Hamiltonian microscopic dynamics and consider systems of interacting particles with Holder noise and potential whose range is large in comparison with the typical distance between neighboring particles. It is shown that the empirical measures associated to the position and velocity of the system converge to the solutions of compressible Euler equations driven by additive Holder path(noise), in the limit as the particle number tends to infinity, for a suitable scaling of the interactions. Furthermore, explicit rates for the convergence are obtained in Besov and Triebel-Lizorkin spaces. Our proof is based on the It & ocirc;-Wentzell-Kunita formula for Young integral. (AU)

Processo FAPESP: 20/04426-6 - Dinâmica estocástica: aspectos analíticos, geométricos e aplicações
Beneficiário:Paulo Regis Caron Ruffino
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 22/03379-0 - Análise estocástica e determinística para modelos irregulares
Beneficiário:Christian Horacio Olivera
Modalidade de apoio: Auxílio à Pesquisa - Regular