Busca avançada
Ano de início
Entree


Revealing patterns in major depressive disorder with machine learning and networks

Texto completo
Autor(es):
Sallum, Loriz Francisco ; Alves, Caroline L. ; Toutain, Thaise G. L. de O. ; Porto, Joel Augusto Moura ; Thielemann, Christiane ; Rodrigues, Francisco A.
Número total de Autores: 6
Tipo de documento: Artigo Científico
Fonte: CHAOS SOLITONS & FRACTALS; v. 194, p. 16-pg., 2025-03-03.
Resumo

Major depressive disorder (MDD) is a multifaceted condition that affects millions of people worldwide and is a leading cause of disability. There is an urgent need for an automated and objective method to detect MDD due to the limitations of traditional diagnostic approaches. In this paper, we propose a methodology based on machine and deep learning to classify patients with MDD and identify altered functional connectivity patterns from EEG data. We compare several connectivity metrics and machine learning algorithms. Complex network measures are used to identify structural brain abnormalities in MDD. Using Spearman correlation for network construction and the SVM classifier, we verify that it is possible to identify MDD patients with high accuracy, exceeding literature results. The SHAP (SHAPley Additive Explanations) summary plot highlights the importance of C4-F8 connections and also reveals dysfunction in certain brain areas and hyperconnectivity in others. Despite the lower performance of the complex network measures for the classification problem, assortativity was found to be a promising biomarker. Our findings suggest that understanding and diagnosing MDD may be aided by the use of machine learning methods and complex networks. (AU)

Processo FAPESP: 13/07375-0 - CeMEAI - Centro de Ciências Matemáticas Aplicadas à Indústria
Beneficiário:Francisco Louzada Neto
Modalidade de apoio: Auxílio à Pesquisa - Centros de Pesquisa, Inovação e Difusão - CEPIDs
Processo FAPESP: 24/02322-0 - Modelagem preditiva da estrutura e da dinâmica de redes complexas usando métodos de aprendizado de máquina
Beneficiário:Francisco Aparecido Rodrigues
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional
Processo FAPESP: 20/09835-1 - IARA - Inteligência Artificial Recriando Ambientes
Beneficiário:André Carlos Ponce de Leon Ferreira de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Programa Centros de Pesquisa em Engenharia