Busca avançada
Ano de início
Entree


Random-key algorithms for optimizing integrated Operating Room Scheduling

Texto completo
Autor(es):
Vieira, Bruno Salezze ; Silva, Eduardo Machado ; Chaves, Antonio Augusto
Número total de Autores: 3
Tipo de documento: Artigo Científico
Fonte: APPLIED SOFT COMPUTING; v. 180, p. 25-pg., 2025-08-01.
Resumo

Efficient surgery room scheduling is essential for hospital efficiency, patient satisfaction, and resource utilization. This study addresses the challenge as a combinatorial optimization problem that incorporates multi-room scheduling, equipment scheduling, and complex availability constraints for rooms, patients, and surgeons, facilitating rescheduling and enhancing operational flexibility. To solve such a problem, we introduce multiple algorithms based on a Random-Key Optimizer (RKO), coupled with relaxed formulations to compute lower bounds efficiently, rigorously tested on literature and new, real-world-based instances. The RKO approach decouples the problem from the solving algorithms through an encoding/decoding layer, making it possible to use the same solving algorithms to multiple room scheduling problems case studies from multiple hospitals, given the particularities of each place, even other optimization problems. Among the possible RKO algorithms, we design the heuristics Biased Random-Key Genetic Algorithm with Q-Learning, Simulated Annealing, and Iterated Local Search for use within an RKO framework, employing a single decoder function. The proposed heuristics, complemented by the lower-bound formulations, provided optimal gaps for evaluating the effectiveness of the heuristic results. Our results demonstrate significant lower-and upper-bound improvements for the literature instances, notably in proving one optimal result. Our strong statistical analysis shows the effectiveness of our implemented heuristic search mechanisms. Furthermore, the best-proposed heuristic efficiently generates schedules for the newly introduced instances, even in highly constrained scenarios. This research offers valuable insights and practical solutions for improving surgery scheduling processes, delivering tangible benefits to hospitals by optimizing resource allocation, reducing patient wait times, and enhancing overall operational efficiency. (AU)

Processo FAPESP: 22/05803-3 - Problemas de corte, empacotamento, dimensionamento de lotes, programação da produção, roteamento e localização e suas integrações em contextos industriais e logísticos
Beneficiário:Reinaldo Morabito Neto
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/15417-8 - Desenvolvimento de uma meta-heurística híbrida com fluxo de controle e parâmetros adaptativos
Beneficiário:Antônio Augusto Chaves
Modalidade de apoio: Auxílio à Pesquisa - Jovens Pesquisadores - Fase 2
Processo FAPESP: 23/04588-4 - Modelos e métodos adaptativos para o problema de corte de estoque multi-período com restrições de setups e capacidade
Beneficiário:Eduardo Machado Silva
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 21/09482-4 - Modelos e métodos de solução para problemas de atribuição de pacientes em leitos e programação de salas de cirurgia
Beneficiário:Bruno Salezze Vieira
Modalidade de apoio: Bolsas no Brasil - Pós-Doutorado
Processo FAPESP: 24/08848-3 - Problema de roteamento de veículos com coleta e entrega de cargas completas: métodos de otimização e restrições práticas da milha intermediária da cadeia de suprimentos
Beneficiário:Antônio Augusto Chaves
Modalidade de apoio: Auxílio à Pesquisa - Regular