Busca avançada
Ano de início
Entree


Increasing the Accuracy of Federated Learning on Non-IID Scenarios using Client Clustering

Texto completo
Autor(es):
de Souza, Lucas Airam C. ; Camilo, Gustavo F. ; Campista, Miguel Elias M. ; Costa, Luis Henrique M. K.
Número total de Autores: 4
Tipo de documento: Artigo Científico
Fonte: 2024 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS, LATINCOM; v. N/A, p. 6-pg., 2024-01-01.
Resumo

Federated Learning (FL) depends on the data distribution among the clients. FL struggles in scenarios with heterogeneous data collected by different clients, which reduces the model's accuracy. Hence, we propose a client clustering system to mitigate the convergence obstacles of federated learning in non-Independent and Identically Distributed (IID) scenarios. Our proposal identifies the clusters using a testing neural network model sent to clients as a probe. After a few training epochs, each client returns to the server a vector containing the last-layer weights of the obtained model. Thus, we save communication and computation resources compared with other clustering proposals that apply iterative methods or use the entire neural network model. We also evaluate three clustering algorithms: K-Means, DBSCAN, and OPTICS. The DBSCAN algorithm demonstrates better results, correctly identifying the clients' clusters in IID and non-IID data distributions. Finally, the results show that our system has a better classification performance than FedAVG, increasing its accuracy by approximately 16% on non-IID scenarios. (AU)

Processo FAPESP: 15/24494-8 - Comunicação e processamento de big data em nuvens e névoas computacionais
Beneficiário:Nelson Luis Saldanha da Fonseca
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 18/23292-0 - Projeto ACCRUE-SFI: infraestrutura avançada e colaborativa de pesquisa para internet do futuro segura
Beneficiário:Otto Carlos Muniz Bandeira Duarte
Modalidade de apoio: Auxílio à Pesquisa - Regular
Processo FAPESP: 15/24485-9 - Internet do futuro aplicada a cidades inteligentes
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático
Processo FAPESP: 14/50937-1 - INCT 2014: da Internet do Futuro
Beneficiário:Fabio Kon
Modalidade de apoio: Auxílio à Pesquisa - Temático