Propriedade de Specht e identidades polinomiais graduadas para algumas álgebras nã...
Mikhail Vladimirovich Zaicev | Moscow State University - Rússia
Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Estadual Campinas, IMECC, Dept Math, BR-13083859 Campinas, SP - Brazil
[2] Univ Fed Campina Grande, UAME CCT, Dept Math, BR-58109970 Campina Grande, PB - Brazil
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | Journal of Algebra; v. 327, n. 1, p. 236-250, FEB 1 2011. |
Citações Web of Science: | 3 |
Resumo | |
The Jordan algebra of the symmetric matrices of order two over a field K has two natural gradings by Z(2), the cyclic group of order 2. We describe the graded polynomial identities for these two gradings when the base field is infinite and of characteristic different from 2. We exhibit bases for these identities in each of the two cases. In one of the cases we perform a series of computations in order to reduce the problem to dealing with associators while in the other case one employs methods and results from Invariant theory. Moreover we extend the latter grading to a Z(2)-grading on B(n), the Jordan algebra of a symmetric bilinear form in a vector space of dimension n (n = 1,2,..., infinity). We call this grading the scalar one since its even part consists only of the scalars. As a by-product we obtain finite bases of the Z(2)-graded identities for B(n). In fact the last result describes the weak Jordan polynomial identities for the pair (B(n), V(n)). (C) 2010 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |
Processo FAPESP: | 07/00447-4 - Identidades graduadas em Álgebras de Lie |
Beneficiário: | Diogo Diniz Pereira da Silva e Silva |
Modalidade de apoio: | Bolsas no Brasil - Doutorado |