Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Quasilinear equations with dependence on the gradient

Texto completo
Autor(es):
De Figueiredo, Djairo G. [1] ; Sanchez, Justino [2, 3] ; Ubillac, Pedro [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, IMECC, BR-13081970 Campinas, SP - Brazil
[2] Univ Santiago Chile, Dept Matemat & CC, Santiago - Chile
[3] Univ La Serena, Dept Matemat, La Serena - Chile
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS; v. 71, n. 10, p. 4862-4868, NOV 15 2009.
Citações Web of Science: 6
Resumo

We discuss the existence of positive solutions of the problem - (q(t)phi(u'(t)))' = f (t, u(t), u'(t)) for t is an element of (0, 1) and u(0) = u(1) = 0. where the nonlinearity f satisfies a superlinearity condition at 0 and a local superlinearity condition at +infinity. This general quasilinear differential operator involves a weight q and a main differentiable part phi which is not necessarily a power. Due to the superlinearity off and its dependence on the derivative, a condition of the Bernstein-Nagumo type is assumed, also involving the differential operator. Our main result is the proof of a priori bounds for the eventual solutions. The presence of the derivative in the right-hand side of the equation requires a priori bounds not only on the solutions themselves, but also on their derivatives, which brings additional difficulties. As an application, we consider a quasilinear Dirichlet problem in an annulus [-div (A(vertical bar del u vertical bar)del u) = f(vertical bar x vertical bar, u, vertical bar del u vertical bar) in r(1) < vertical bar x vertical bar < r(2), u(x) = 0 on vertical bar x vertical bar = R(1) and vertical bar x vertical bar = R(2). (C) 2009 Elsevier Ltd. All rights reserved. (AU)