Identidades graduadas em álgebras de Lie graduada-simples de dimensão finita
Vesselin Stoyanov Drensky | Institute of Mathematics Bulgarian Academy of Sciences...
Texto completo | |
Autor(es): |
Número total de Autores: 3
|
Afiliação do(s) autor(es): | [1] Univ Fed Campina Grande, UAME CCT, BR-58109970 Campina Grande, PB - Brazil
[2] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP - Brazil
[3] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF - Brazil
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | MONATSHEFTE FUR MATHEMATIK; v. 157, n. 3, p. 247-256, JUL 2009. |
Citações Web of Science: | 6 |
Resumo | |
Let K be an infinite integral domain, and let A = M(2)(K) be the matrix algebra of order two over K. The algebra A can be given a natural Z(2)-grading by assuming that the diagonal matrices are the 0-component while the off-diagonal ones form the 1-component. In this paper we study the graded identities and the graded central polynomials of A. We exhibit finite bases for these graded identities and central polynomials. It turns out that the behavior of the graded identities and central polynomials in the case under consideration is much like that in the case when K is an infinite field of characteristic 0 or p > 2. Our proofs are characteristic-free so they work when K is an infinite field, char K = 2. Thus we describe finite bases of the graded identities and graded central polynomials for M(2)(K) in this case as well. (AU) | |
Processo FAPESP: | 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |