Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Dept Matemat, BR-13560970 Sao Carlos, SP - Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice - Poland
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY; v. 361, n. 5, p. 2567-2586, 2009. |
Citações Web of Science: | 10 |
Resumo | |
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques. (AU) | |
Processo FAPESP: | 03/10042-0 - Sistemas dinâmicos não lineares e aplicações |
Beneficiário: | Alexandre Nolasco de Carvalho |
Modalidade de apoio: | Auxílio à Pesquisa - Programa PRONEX - Temático |