Propriedade de Specht e identidades polinomiais graduadas para algumas álgebras nã...
Identidades polinomiais da álgebra de matrizes com estruturas adicionais
Texto completo | |
Autor(es): |
Número total de Autores: 3
|
Afiliação do(s) autor(es): | [1] Univ Basilicata, Dipartimento Matemat & Informat, I-85100 Potenza - Italy
[2] Univ Estadual Campinas, IMECC, BR-13083970 Campinas, SP - Brazil
[3] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana - Brazil
Número total de Afiliações: 3
|
Tipo de documento: | Artigo Científico |
Fonte: | Linear Algebra and its Applications; v. 432, n. 2-3, p. 780-795, JAN 15 2010. |
Citações Web of Science: | 1 |
Resumo | |
In this paper we study the graded identities satisfied by the superalgebras M(a,b) over the Grassmann algebra and by their tensor products. These algebras play a crucial role in the theory developed by A. Kemer that led to the solution of the long standing Specht problem. It is well known that over a field of characteristic 0, the algebras M(pr)+q(s,ps)+q(r) and M(p.q) circle times M(r,s) satisfy the same ordinary polynomial identities. By means of describing the corresponding graded identities we prove that the T-ideal of the former algebra is contained in the T-ideal of the latter. Furthermore the inclusion is proper at least in case (r, s) = (1, 1). Finally we deal with the graded identities satisfied by algebras of type M(2n-1),2(n-1) and relate these graded identities to the ones of tensor powers of the Grassmann algebra. Our proofs are combinatorial and rely on the relationship between graded and ordinary identities as well as on appropriate models for the corresponding relatively free graded algebras. (C) 2009 Elsevier Inc. All rights reserved. (AU) | |
Processo FAPESP: | 05/60337-2 - Álgebras de Lie e de Jordan, suas representações e generalizações |
Beneficiário: | Ivan Chestakov |
Modalidade de apoio: | Auxílio à Pesquisa - Temático |