Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Generalized exponential function and discrete growth models

Texto completo
Autor(es):
Martinez, Alexandre Souto [1] ; Gonzalez, Rodrigo Silva ; Espindola, Aquino Lauri [2]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Natl Inst Sci & Technol Complex Syst, BR-14040901 Sao Paulo - Brazil
[2] Univ Sao Paulo, Fac Filosofia Ciencias & Letras Ribeirao Preto, Dept Fis & Matemat, BR-14040901 Sao Paulo - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS; v. 388, n. 14, p. 2922-2930, JUL 15 2009.
Citações Web of Science: 18
Resumo

Here we show that a particular one-parameter generalization of the exponential function is suitable to unify most of the popular one-species discrete population dynamic models into a simple formula. A physical interpretation is given to this new introduced parameter in the context of the continuous Richards model, which remains valid for the discrete case. From the discretization of the continuous Richards' model (generalization of the Gompertz and Verhulst models), one obtains a generalized logistic map and we briefly study its properties. Notice, however that the physical interpretation for the introduced parameter persists valid for the discrete case. Next, we generalize the (scramble competition) theta-Ricker discrete model and analytically calculate the fixed points as well as their stabilities. In contrast to previous generalizations, from the generalized theta-Ricker model one is able to retrieve either scramble or contest models. (C) 2009 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 06/60333-0 - Dinâmicas migratórias com modelos computacionais baseados em agentes
Beneficiário:Aquino Lauri de Espíndola
Modalidade de apoio: Auxílio à Pesquisa - Programa Primeiros Projetos