Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Google Scholar, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Improving ultimate convergence of an Augmented Lagrangian method

Texto completo
Autor(es):
Birgin‚ EG ; Martinez‚ JM
Número total de Autores: 2
Tipo de documento: Artigo Científico
Fonte: OPTIMIZATION METHODS & SOFTWARE; v. 23, n. 2, p. 177-195, 2008.
Resumo

Optimization methods that employ the classical Powell-Hestenes-Rockafellar augmented Lagrangian are useful tools for solving nonlinear programming problems. Their reputation decreased in the last 10 years due to the comparative success of interior-point Newtonian algorithms, which are asymptotically faster. In this research, a combination of both approaches is evaluated. The idea is to produce a competitive method, being more robust and efficient than its 'pure' counterparts for critical problems. Moreover, an additional hybrid algorithm is defined, in which the interior-point method is replaced by the Newtonian resolution of a Karush-Kuhn-Tucker (KKT) system identified by the augmented Lagrangian algorithm. The software used in this work is freely available through the Tango Project web page:http://www.ime.usp.br/similar to egbirgin/tango/. (AU)

Processo FAPESP: 06/53768-0 - Métodos computacionais de otimização
Beneficiário:José Mário Martinez Perez
Modalidade de apoio: Auxílio à Pesquisa - Temático