Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Linear and Nonlinear Mixed-Effects Models for Censored HIV Viral Loads Using Normal/Independent Distributions

Texto completo
Autor(es):
Lachos, Victor H. [1] ; Bandyopadhyay, Dipankar [2] ; Dey, Dipak K. [3]
Número total de Autores: 3
Afiliação do(s) autor(es):
[1] Univ Estadual Campinas, Dept Stat, BR-6065 Sao Paulo - Brazil
[2] Med Univ S Carolina, Div Biostat & Epidemiol, Charleston, SC 29425 - USA
[3] Univ Connecticut, Dept Stat, Storrs, CT 06269 - USA
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: BIOMETRICS; v. 67, n. 4, p. 1594-1604, DEC 2011.
Citações Web of Science: 40
Resumo

HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays. Hence, the responses are either left or right censored. Linear (and nonlinear) mixed-effects models (with modifications to accommodate censoring) are routinely used to analyze this type of data and are based on normality assumptions for the random terms. However, those analyses might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear (and nonlinear) models replacing the Gaussian assumptions for the random terms with normal/independent (NI) distributions. The NI is an attractive class of symmetric heavy-tailed densities that includes the normal, Student's-t, slash, and the contaminated normal distributions as special cases. The marginal likelihood is tractable (using approximations for nonlinear models) and can be used to develop Bayesian case-deletion influence diagnostics based on the KullbackLeibler divergence. The newly developed procedures are illustrated with two HIV AIDS studies on viral loads that were initially analyzed using normal (censored) mixed-effects models, as well as simulations. (AU)

Processo FAPESP: 10/01246-5 - Modelos lineares e não lineares com distribuições de misturas de escala skew-normal
Beneficiário:Víctor Hugo Lachos Dávila
Linha de fomento: Bolsas no Exterior - Pesquisa