Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Segmentation of Low-Cost Remote Sensing Images Combining Vegetation Indices and Mean Shift

Texto completo
Autor(es):
Ponti, Jr., Moacir P. [1]
Número total de Autores: 1
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 1
Tipo de documento: Artigo Científico
Fonte: IEEE Geoscience and Remote Sensing Letters; v. 10, n. 1, p. 67-70, JAN 2013.
Citações Web of Science: 27
Resumo

The development of low-cost remote sensing systems is important in small agriculture business, particularly in developing countries, to allow feasible use of images to gather information. However, images obtained through such systems with uncalibrated cameras have often illumination variations, shadows, and other elements that can hinder the analysis by image processing techniques. This letter investigates the combination of vegetation indices (color index of vegetation extraction, visual vegetation index, and excess green) and the mean-shift algorithm, based on the local density estimation in the color space on images acquired by a low-cost system. The objective is to detect green coverage, gaps, and degraded areas. The results showed that combining local density estimation and vegetation indices improves the segmentation accuracy when compared with the competing methods. It deals well with images in different conditions and with regions of imbalanced sizes, confirming the practical application of the low-cost system. (AU)

Processo FAPESP: 11/16411-4 - Sistema de múltiplos classificadores em problemas de desbalanceamento de classes e grandes conjuntos de dados
Beneficiário:Moacir Antonelli Ponti
Modalidade de apoio: Auxílio à Pesquisa - Regular