| Texto completo | |
| Autor(es): |
Fenille, Marcio Colombo
[1]
Número total de Autores: 1
|
| Afiliação do(s) autor(es): | [1] Univ Fed Itajuba, Inst Ciencias Exatas, BR-37500904 Itajuba, MG - Brazil
Número total de Afiliações: 1
|
| Tipo de documento: | Artigo Científico |
| Fonte: | MATHEMATICA SCANDINAVICA; v. 111, n. 1, p. 92-106, 2012. |
| Citações Web of Science: | 0 |
| Resumo | |
This article is a study of the root theory for maps from two-dimensional CW-complexes into the 2-sphere. Given such a map f : K -> S-2 we define two integers zeta(f) and zeta(K, d(f)), which are upper bounds for the minimal number of roots off, denote be mu(f). The number zeta(f) is only defined when f is a cellular map and zeta(K,d(f)) is defined when K is homotopy equivalent to the 2-sphere. When these two numbers are defined, we have the inequality mu(f) <= zeta(K, d(f)) <= zeta(f), where d(f) is the so-called homological degree of f. We use these results to present two very interesting examples of maps from 2-complexes homotopy equivalent to the sphere into the sphere. (AU) | |
| Processo FAPESP: | 07/05843-5 - Raízes de funções de complexos 2-dimensionais em superfícies fechadas. |
| Beneficiário: | Márcio Colombo Fenille |
| Modalidade de apoio: | Bolsas no Brasil - Doutorado |