Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Discriminating word senses with tourist walks in complex networks

Texto completo
Autor(es):
Silva, Thiago C. [1] ; Amancio, Diego R. [2]
Número total de Autores: 2
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Math & Comp Sci, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Sao Paulo, Inst Phys Sao Carlos, BR-13560970 Sao Carlos, SP - Brazil
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: European Physical Journal B; v. 86, n. 7 JUL 2013.
Citações Web of Science: 2
Resumo

Patterns of topological arrangement are widely used for both animal and human brains in the learning process. Nevertheless, automatic learning techniques frequently overlook these patterns. In this paper, we apply a learning technique based on the structural organization of the data in the attribute space to the problem of discriminating the senses of 10 polysemous words. Using two types of characterization of meanings, namely semantical and topological approaches, we have observed significative accuracy rates in identifying the suitable meanings in both techniques. Most importantly, we have found that the characterization based on the deterministic tourist walk improves the disambiguation process when one compares with the discrimination achieved with traditional complex networks measurements such as assortativity and clustering coefficient. To our knowledge, this is the first time that such deterministic walk has been applied to such a kind of problem. Therefore, our finding suggests that the tourist walk characterization may be useful in other related applications. (AU)

Processo FAPESP: 10/00927-9 - Classificação de textos com redes complexas
Beneficiário:Diego Raphael Amancio
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto
Processo FAPESP: 09/12329-1 - Análise de propagação de erros em aprendizado semi-supervisionado baseado em redes complexas
Beneficiário:Thiago Christiano Silva
Modalidade de apoio: Bolsas no Brasil - Doutorado Direto