Texto completo | |
Autor(es): |
Número total de Autores: 2
|
Afiliação do(s) autor(es): | [1] Univ Sao Paulo, Inst Math & Stat, Sao Paulo - Brazil
[2] Sobolev Inst Math, Novosibirsk - Russia
Número total de Afiliações: 2
|
Tipo de documento: | Artigo Científico |
Fonte: | COMMUNICATIONS IN ALGEBRA; v. 41, n. 6, p. 2242-2253, MAY 21 2013. |
Citações Web of Science: | 3 |
Resumo | |
We use groups with triality to construct a series of nonassociative Moufang loops. Certain members of this series contain an abelian normal subloop with the corresponding quotient being a cyclic group. In particular, we give a new series of examples of finite abelian-by-cyclic Moufang loops. The previously known {[}<xref rid={''}CIT0010{''} ref-type={''}bibr{''}>10</xref>] loops of this type of odd order 3q(3), with prime q1(mod3), are particular cases of our series. Some of the examples are shown to be embeddable into a Cayley algebra. (AU) | |
Processo FAPESP: | 10/51793-2 - Andrei Zavarnitsine | Sobolev Instituto de Matemática de Novosibirsk - Rússia |
Beneficiário: | Alexandre Grichkov |
Modalidade de apoio: | Auxílio à Pesquisa - Pesquisador Visitante - Internacional |