Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Skew product semiflows and Morse decomposition

Texto completo
Autor(es):
Bortolan, M. C. [1] ; Caraballo, T. [2] ; Carvalho, A. N. [1] ; Langa, J. A. [2]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP - Brazil
[2] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville - Spain
Número total de Afiliações: 2
Tipo de documento: Artigo Científico
Fonte: Journal of Differential Equations; v. 255, n. 8, p. 2436-2462, OCT 15 2013.
Citações Web of Science: 11
Resumo

This paper is devoted to the investigation of the dynamics of non-autonomous differential equations. The description of the asymptotic dynamics of non-autonomous equations lies on dynamical structures of some associated limiting non-autonomous - and autonomous - differential equations (one for each global solution in the attractor of the driving semigroup of the associated skew product semiflow). In some cases, we have infinitely many limiting problems (in contrast with the autonomous - or asymptotically autonomous - case for which we have only one limiting problem; that is, the semigroup itself). We concentrate our attention in the study of the Morse decomposition of attractors for these non-autonomous limiting problems as a mean to understand some of the asymptotics of our non-autonomous differential equations. In particular, we derive a Morse decomposition for the global attractors of skew product semiflows (and thus for pullback attractors of non-autonomous differential equations) from a Morse decomposition of the attractor for the associated driving semigroup. Our theory is well suited to describe the asymptotic dynamics of non: autonomous differential equations defined on the whole line or just for positive times, or for differential equations driven by a general semigroup. (C) 2013 Elsevier Inc. All rights reserved. (AU)

Processo FAPESP: 10/50690-5 - Estimativas da dimensao fractal para atratores globais em semigrupos gradient-like generalizados
Beneficiário:Matheus Cheque Bortolan
Modalidade de apoio: Bolsas no Brasil - Doutorado
Processo FAPESP: 08/55516-3 - Sistemas dinâmicos não lineares em espaços de dimensão infinita
Beneficiário:Alexandre Nolasco de Carvalho
Modalidade de apoio: Auxílio à Pesquisa - Temático