Busca avançada
Ano de início
Entree
(Referência obtida automaticamente do Web of Science, por meio da informação sobre o financiamento pela FAPESP e o número do processo correspondente, incluída na publicação pelos autores.)

Partially linear censored regression models using heavy-tailed distributions: A Bayesian approach

Texto completo
Autor(es):
Castro, Luis M. [1] ; Lachos, Victor H. [2] ; Ferreira, Guillermo P. [1] ; Arellano-Valle, Reinaldo B. [3]
Número total de Autores: 4
Afiliação do(s) autor(es):
[1] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Estadist, Concepcion - Chile
[2] Univ Estadual Campinas, IMECC, Dept Estat, Campinas, SP - Brazil
[3] Pontificia Univ Catolica Chile, Fac Matemat, Dept Estadist, Santiago 22 - Chile
Número total de Afiliações: 3
Tipo de documento: Artigo Científico
Fonte: STATISTICAL METHODOLOGY; v. 18, p. 14-31, MAY 2014.
Citações Web of Science: 7
Resumo

Linear regression models where the response variable is censored are often considered in statistical analysis. A parametric relationship between the response variable and covariates and normality of random errors are assumptions typically considered in modeling censored responses. In this context, the aim of this paper is to extend the normal censored regression model by considering on one hand that the response variable is linearly dependent on some covariates whereas its relation to other variables is characterized by nonparametric functions, and on the other hand that error terms of the regression model belong to a class of symmetric heavy-tailed distributions capable of accommodating outliers and/or influential observations in a better way than the normal distribution. We achieve a fully Bayesian inference using pth-degree spline smooth functions to approximate the nonparametric functions. The likelihood function is utilized to compute not only some Bayesian model selection measures but also to develop Bayesian case-deletion influence diagnostics based on the q-divergence measures. The newly developed procedures are illustrated with an application and simulated data. (C) 2013 Elsevier B.V. All rights reserved. (AU)

Processo FAPESP: 12/19445-0 - Modelagem flexível de modelos longitudinais complexos usando distribuições skew-elípticas
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Pesquisador Visitante - Internacional
Processo FAPESP: 11/17400-6 - Aplicações das distribuições de misturas da escala Skew-Normal em modelos de efeitos mistos
Beneficiário:Víctor Hugo Lachos Dávila
Modalidade de apoio: Auxílio à Pesquisa - Regular